研究成果・発表論文

New method for exploring super-Eddington active galactic nuclei by near-infrared observations

Kawakatu, N.,   & Ohsuga, K.


要旨
We propose a new method to explore the candidate super-Eddington active galactic nuclei (AGNs). We examine the properties of infrared (IR) emission from the inner edge of the dusty torus in AGNs, which are powered by super- or sub-Eddington accretion flows around black holes, by considering the dependence of the polar angle on the radiation flux of accretion flows. We find that for super-Eddington AGNs, of which the mass accretion rate is more than 10$^2$ times larger than the Eddington rate, the ratio of the AGN IR luminosity and the disc bolometric luminosity is less than 10$^-2$, unless the half opening angle of the torus (\ensuremathþeta$_torus$) is small (\ensuremathþeta$_torus$ < 65°). This is due to the self-occultation effect, whereby the self-absorption at the outer region of the super-Eddington flow dilutes the illumination of the torus. Such a small luminosity ratio is not observed in sub-Eddington AGNs, whose mass accretion rate is comparable to or no more than 10 times larger than the Eddington mass accretion rate, except for extremely thin tori (\ensuremathþeta$_torus$ > 85°). We also consider the properties of the near-IR (NIR) emission radiated from hot dust >1000 K. We find that super-Eddington AGNs have a ratio of the NIR luminosity to the bolometric luminosity, L$_NIR, AGN$/L$_bol, disc$, at least one order of magnitude smaller than for sub-Eddington AGNs for a wide range of half opening angle (\ensuremathþeta$_torus$ > 65°), for various types of dusty torus model. Thus, a relatively low L$_NIR, AGN$/L$_bol, disc$ is a property that allows identification of candidate super-Eddington AGNs. Lastly, we discuss the possibility that NIR-faint quasars at redshift z̃ 6 discovered by a recent deep Sloan Digital Sky Survey may be young quasars whose black holes grow via super- Eddington accretion.




Image
Image
Image
Image
Image
Image