研究成果・発表論文

AGN activity triggered by circumnuclear starbursts

Umemura, Masayuki,   Fukue, Jun,   & Mineshige, Shin


要旨
We present a radiative/hydrodynamical mechanism for triggering AGN activity; the intensive radiation from a circumnuclear starburst drives the nuclear fueling due to the Poynting-Robertson (radiation drag) effects. When the starburst is in an early and therefore super-Eddington phase, the radiative flux force is likely to obstruct severely the mass accretion onto the nucleus (radiative blizzard phase). But, in a later sub-Eddington phase, the radiation flux force builds up a wall of dusty gas. The wall absorbs the radiation from the starburst regions and re-emits infrared radiation, which causes the disk accretion due to the Poynting-Robertson effect, consequently leading to nuclear fueling (radiative avalanche phase). The radiative avalanche could link to an advection-dominated accretion flow (ADAF) onto a putative supermassive black hole. The radiatively triggered nuclear activity diminishes as the starburst dims. In this context, the AGN type could be discriminated not only by the viewing angles but also by the evolution of a circumnuclear starbursts. Based on such a picture, we reconsider the AGN activity in luminous IRAS galaxies.






Image
Image
Image
Image
Image
Image
Image
Image
Image