研究成果・発表論文

Hydrodynamical evolution of AGN driven by radiation from circumnuclear starbursts

Ohsuga, Ken,   Umemura, Masayuki,   Fukue, Jun,   & Mineshige, Shin


要旨
We explore the hydrodynamical evolution of dusty gas around active galactic nuclei (AGN) driven by the radiation from circumnuclear starbursts. For this purpose, we calculate the temporal equilibrium states between the radiation force by starburst regions and the gravity in galactic nuclei. As a result, we find that the equilibrium patterns between the radiation force and the gravity are roughly characterized by three types. The first is the situation where the starburst luminosity is larger than the Eddington luminosity. In this case, the dusty gas is blown out like a wind. We may detect intense infrared (IR) radiation from the starburst regions screened by blown-out dusty gas. The second is the situation when the radiation force is comparable to the gravity. In this case, the equilibrium surface surrounds the nuclear regions as well as starburst regions. Since the dusty gas absorbs UV or soft X-rays from the center and re-emits IR radiation, we may recognize it as a Seyfert 2 galaxy. The last is the situation where the starburst luminosity is small. In this case, the dusty wall of equilibrium would be built up only in the vicinity of starburst regions. The radiation from central regions is rarely obscured, because the dusty regions have only small angular extension. So, it would look like a Seyfert 1 galaxy which is characterized by intense soft X-rays. When we consider the stellar evolution in starburst regions, the starburst luminosity decreases with time. Therefore, we can recognize the above three types as time evolution; a starburst galaxy (first stage), a Seyfert 2 galaxy (second stage), and a Seyfert 1 galaxy (third stage). Note that we present here an alternative scenario for explaining the relation between Sy 1's and Sy 2's to the standard ``Unified Scheme''.






Image
Image
Image
Image
Image
Image
Image
Image
Image